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have been made for distances and angles involving 
these atoms. The coordinates of the hydrogen atoms 
are listed in Table 5. 

A stereoscopic view (Johnson, 1965)showing the 
packing of the molecules is given in Fig. 2. There are 
no short contacts between molecules. The shortest 
major-atom-to-hydrogen intermolecular distance is 
2.30 A between H(52) of the base molecule and 0(25) 
of the moleculo in translational position (x,y,z-l.O). 
The shortest hydrogen-to-hydrogen intermolecular dis- 
tance is 2.38 A between H(52) in the base molecule and 
H(49) of the molecule in translational position 
(x,y,z-l.O). 

Chemistry 
The chemical results of this analysis are illustrated in 

Fig. 3. It can be seen that the intermediate examined 
in this analysis would not be suitable for conversion 
to the desired steroid because of incorrect fusion of the 
C-D ring (cis instead of the desired trans fusion). The 
results of the X-ray analysis are in direct opposition 

to the result predicted by analogies present in the 
organic literature. The key step in preparing the C=D 
ring stereochemistry involved a stereospecific hydro- 
genation. Strong and relatively direct analogies in the 
organic literature indicated that such a hydrogen would 
undoubtedly result in a trans ring fusion. The undisput- 
able evidence that these analogies were incorrect again 
amplifies the desirability of the use of X-ray analysis 
in organic chemistry. 
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This paper describes two classes of integer programming formulations of the phase problem for centro- 
symmetric crystals projected on to one dimension; they provide a much more complete formulation of 
the basic problem than do earlier integer programming approaches. One class of formulation seeks to 
match the structure factor expressions in terms of the phase variables with expressions in terms of atom 
positions; the second class matches electron-density expressions rather than structure factors. The basic 
advantage of this approach over more traditional methods is that it enables us to find a global minimum 
of the discrepancy function rather than a local minimum, obviating the need to work from many 
initial solutions in turn. Experience so far is limited to small artificial examples which have been solved 
successfully in all cases. Computational difficulties seem likely to limit the size of structure which can 
be solved in this way. The extension to three-dimensional structures with or without centrosymmetry 
is straightforward, but leads to large integer programming problems whose solution is probably beyond 
the scope of currently available computers and integer programming algorithms. 

Integer programming problems are linear program- 
ruing problems (i.e. the minimization of a linear func- 
tion of non-negative variables subject to linear con- 
straints) in which some of the variables are required to 
be integers. There are several published algorithms for 
the solution of such problems, though the solution of 
large problems is still in doubt. 

The discrete nature of the phases of structure factors 
in centrosymmetric crystals suggests the use of integer 
programming in the solution of these structures. Free- 
man, Sime, Bennett, Dakin & Green (1963) showed 

that integer programming formulations could be used 
to express such conditions as that phases should be n 
or -re, electron density should be non-negative and 
that it should possess a specified number of peaks; 
Dakin (1966a) gives a corrected and expanded version 
of this approach. It appears, however, that non-nega- 
tivity is not a sufficient criterion and that formulations 
which give adequate recognition of peaks lead to large 
problems which are difficult to solve. The present ap- 
proach is a much more direct and complete representa- 
tion of the problem. Integer variables are introduced 
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to represent the signs of structure factors and the posi- 
tions of atoms. The integer programming problem be- 
comes that of finding values of sign and position vari- 
ables which match as closely as possible the effects of 
the measured structure factors with the effect of the 
atoms known to be present. Two classes of formulation 
have been developed. The first seeks to match structure and 
factors and is therefore related to the least-squares 
method, the major differences being that a linear crite- 
rion of fit rather than the squared discrepancy must be 
used, and that the possibility of converging to a local 
but non-global minimum is avoided. Both formulations 
were developed in 1964 but have previously appeared 
in unpublished reports only (see Dakin 1964, 1966b). 
Both formulations have been successfully applied to 
the solution of artificial test examples involving four or 
five atoms, but lack of access to large scale computing 
facilities since then has prevented further testing. 

The paper is mainly concerned with the one-dimen- 
sional centrosymmetric case. The extension to two- or 
three-dimensional and non-symmetric structures is 
straightforward but leads to very large problems; it 
remains to be seen whether the solution of such prob- and 
lems will prove computationally practicable. 

Formulation in terms of structure factors 

First we need to express a structure factor Fn00 (here- 
after written as Fn) in terms of its sign and modulus. 
The sign is represented by an integer variable sn which 
can take one of the two values 0 (representing minus) 
or 1 (representing plus). In integer programming terms 
we have: 

Fn=(2Sh-- 1)Eh, (I) 

0 _< sn < 1 (2) 
and 

sn integral. (3) 

En in (1) is a constant which, in practice, will be an 
approximate value for Fn derived from X-ray diffrac- 
tion data. Hence (1) expresses Fn as a linear function 
of the variables sn. 

Secondly we need to express the structure factor Fn 
as a linear function of atom position variables. We have 

Fn= ~ 2fin cos (2nhxj) (4) 
I 

where xj is the position of the j th  atom in the unit cell 
and fin is the (h00) scattering factor for the j th  atom. 
This is a highly non-linear function of the positions xj 
but it can be made linear by the use of integer variables 
to represent the positions of the atoms. A simple 
way of doing this is to approximate the value at x by 
the value at the nearest of a set of grid points denoted 
by x~ and define integer variables pr~ to represent the 
number of atoms of type r near position x~. By making 
the grid sufficiently fine the approximating error is not 
important. Equation (4) then becomes 

where 

Fn= ~ ~ 2frn cos (2nhxOpr, (5) 
r 1 

pr~=nr , (6) 
t 

Pr~ > 0 (7) 

pri integral (8) 

where there are nr atoms of type r in the half unit cell. 
Our problem then becomes one of finding values of 

sn and pr~ which satisfy equations (2), (3), (6) and (7) 
and minimize the discrepancies between the corre- 
sponding expressions (1) and (5). A least-squares crite- 
rion cannot be expressed in terms of linear inequalities 
but there are several criteria which can be so expressed. 
One such criterion is to minimize a weighted sum of the 
moduli of the discrepancies. 

If, for each h included in the formulation, we intro- 
duce error variables elh and e2h which satisfy 

elh >_ 0 ,  e2h >_ 0 (9) 

(2Sn- 1)En- ~ ~ 2frn cos (2nhx,)pr~=eu,-ezn (10) 
r 1 

then the smallest value which (elh + e2h) can take is 

l(2sh- 1)Eh-- ~ ~ 2frn cos (2rchxdpr, I 
r 1 

i.e. the modulus of the discrepancy between the two 
expressions (1) and (5) for Fn. 

To complete the formulation we introduce positive 
weights wn and note that one of the signs (sg, say) can 
be selected arbitrarily (minus, say). We shall suppose 
that there are t different types of atom present, n grid 
points and that, apart from g, a subset S of the struc- 
ture factors is considered. The complete formulation is 
then as follows. 

Find values of sn (h ~ S), pr~ (r= 1, . . . ,  t; 
i=  1, . . . ,  n), eha and e2h (h c- S, h =g)  
which minimize 

Z= ~ Wh(elh + eh2 ) (11) 
h =g,h~S 

and satisfy 

(2sh-1)Eh--  ~ ~ 2frh cos (2nhx,)pr, 
r = l  1=I 

=elh--ezh(h e S) (10) 

- E -  ~ 2frg cos (2ngx~)pr~=elg-e2g (10') 
r = l i = l  

f f  . Pr~ = nr  ( r =  1, . . . ,  t )  
l=l 

O<_sh~ 1 (h ~ S) 

sh integral (h e S) 

(12) 

(2) 

(3) 

A C 26B - 15 



2114 THE USE OF I N T E G E R  P R O G R A M M I N G  TO SOLVE C R Y S T A L  S T R U C T U R E S  

Pr~ > O (r= l, . . . ,  t; i= l, . . . ,  n) (7) 

Pr~ integral (r = 1, . . . ,  t; i =  1, . . . ,  n) (8) 

If there are m members of S then this formulation con- 
tains (3m + 2 + nt) variables and, apart from the indivi- 
dual bounds (2), (m+t+ 1) constraints. It can readily 
be rearranged to include in the initial basis, eln 
(h=g, h ~ S) and one pr~ for each r to give [2m+ 1 + 
t ( n -  1)] non-basic variables. 

The actual size of integer programming problem re- 
quired to solve a given structure will depend on the 
number of structure factors included in the formulation 
and the number of grid points; this raises the question 
of how many of each should be included for a given 
structure. The computational difficulties in solving the 
integer programming problem are such that one should 
not expect to obtain a refined structure immediately; 
it will probably be more efficient to use the coarsest 
formulation which will allow us to correctly resolve the 
structure and refine this as a subsequent step. 

There seems to be no firm basis which would allow 
one to determine theoretically the coarsest model which 
will work, but some rough rules are apparent. Pre- 
sumably one would need to include at least as many 
structure factors as there are atoms whose positions 
are to be d e t e r m i n e d -  somewhat more than this is 
probably necessary. For one of the test examples twice 
the number of atoms appeared to be barely sufficient. 
If  one allows for six grid points per cycle of the highest 
order structure factor (hi, say ) this gives 3h1 grid points 
for the half unit cell. Hence for a cell with no symmetry 
(additional to centrosymmetry) with M ( =  ~ nr) atoms 
in the half cell it might be reasonable to include the 
first 1.5 M structure factors and 4.5 M grid points, 
giving a problem with [M(3 + 4.5t) - t -  1] variables and 
1 .5M+t  constraints. This is a tentative suggestion 
which requires testing. Probems with additional sym- 
metry will require the inclusion of fewer structure fac- 
tors for a given total number of atoms, but high order 
components necessitating a fine grid will still be inclu- 
ded, since some low order components will be absent be- 
cause of symmetry. 

Table 1 shows the size of integer programming prob- 
lems arising from problems with no additional symme- 
try, based on the above assumptions. The Table gives 
data storage requirements for the particular program 
used to obtain the results below. If internal storage 
only is used then storage could become a problem for 
more than about 40 atoms in the half unit cell if there 

is only one atom type, and somewhat fewer atoms if 
there are more types. With current trends in computer 
development, storage should become progressively less 
of a problem. It may well be that one can correctly 
resolve the structure using a compressed model in 
which some types are amalgamated, with a compro- 
mise set of scattering factors. 

At the present state of the art computation time is 
likely to be the limiting factor. On the basis of known 
experience one would not be very confident about 
solving problems with more than about 20 (1 type) or 
7 (4 types) atoms in the half unit cell. However, greater 
problems might be worth attempting, especially since 
some integer programming algorithms (such as that 
described by Dakin, 1965) will reach a solution, not 
necessarily optimal, quite quickly. It would be worth 
investigating whether these initial solutions correctly 
resolve the structure in a high proportion of cases. For  
the small artificial examples so far investigated initial 
solutions were substantially correct. 

Formula t ion  in t erms  o f  e lec tron  density 

Our approach so far has been to express the structure 
factors in terms of both sign and atom position vari- 
ables and to minimize the discrepancy. An alternative 
approach is to obtain two expressions for electron den- 
sity - one in terms of sign variables and measured struc- 
ture factors and the other in terms of atom positions 
and to minimize some measure of the total discrepancy 
between the two expressions over some set of points ~j; 
j = 1, 2 , . . . ,  N not necessarily the same points x~ which 
are used for atom positions). As before one may either 
minimize the sum of moduli of discrepancies or the 
largest discrepancy. The expression in terms of sign 
variables is obtained by replacing Fh cos (2nh~j) by 
(2s~- 1)E~ cos (2nh~j) in the usual expression for elec- 
tron density. In terms of position variables the electron 

t n 

density at ~j is given by ~ ~ Ar(~-xOpr~, where the 
r = l l  -~1 

function Ar(~-  x) gives the contribution to the electron 
density at ~ of an atom of type r centred at x. 

One cannot predict which approach is likely to prove 
more successful in practice: both should be tried. If  the 
atom position grid and the number of Fourier terms 
are the same and density is sampled at the same number 
of points as there are Fourier coefficients included then 
both formulations give the same size of problem. Just 
how the smallest practicable formulations for the two 
approaches would compare remains to be seen. The 

Table 1. Computer storage requirements 
1 Atom type 4 Atom types 

Atoms Cons~aints Variables Storage "Cons~aints Variables Storage" 
4 7 38 300 10 79 1000 

10 16 73 1400 19 205 4300 
20 31 148 5000 34 415 15000 
40 61 298 19000 64 835 55000 

100 151 748 115000 154 2095 330000 
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first approach has the advantage that it makes no as- 
sumptions about structure factors which are omitted; 
the second approach assumes, in effect, that they are of 
zero magnitude. The ability to put a weighting on dif- 
ferent structure factor errors may also be an advantage 
for the first approach where one has reasons for be- 
lieving that some measurements are more accurate than 
others. 

A further variant is to use piecewise linear approx- 
imations rather than step approximations to the func- 
tions En cos (2nhx) (first approach) or Ar(~j-x)  (sec- 
ond approach). The integer position variables pr~, indi- 
cating the presence of an atom in a cell of the grid, are 
augmented by continuous position variables qr~, indi- 
cating the position of the atom within the cell; qr~ 
must satisfy the constraints 

O<qr~<pr~(r=l, . . . , t ; i = l , 2  . . . .  , n ) .  

If we replace cos (2nhx~)pri in (10) by ah~pr~ + bh~qr~ then 
cos (2nhx) can be represented in cell i by an arbitrary 
straight line segment whose position and slope are de- 
termined by the constants ah~ and bh~ respectively. 
These constants might be chosen to minimize the maxi- 
mum approximating error. For a given atom position 
grid size this gives a smaller approximation error, but 
requires more constraints and variables. One can take 
advantage of this and use a coarser grid, but it appears 
that for a given level of approximating error the step 
approximation will still lead to a smaller integer pro- 
gramming problem. 

Extension to three-dimensional and asymmetric problems 

Both formulations and their variants can be extended 
to two- or three-dimensional structures which are not 
necessarily centrosymmetric. The resulting problems 
are very large; their solution may not be practicable 
by currently available techniques and computers - al- 
though this point is not definitely established. Develop- 
ments in solution algorithms and large scale computers 
will improve this situation. 

The three-dimensional centrosymmetric case in- 
volves very little extension other than the use of a three- 
dimensional rather than a one-dimensional grid. We 
shall also need to replace terms of the form cos 2nhx 
by terms of the form cos 2n(hx+ky+ lz). The size of 
problem, however, grows much more rapidly with the 
number of atoms than the one-dimensional model. For 
a given number of atoms one will presumably require 
about three times as many structure factors, as there 
are three times as many coordinates to be determined; 
for a given grid spacing the number of points will be 
nearly cubed. The use of piece-wise linear approxim- 
ations should have a decided advantage in three dimen- 
sions, since the penalties in obtaining a finer grid are 
so great. 

Non-centrosymmetric problems with continuous 
phase variation will give rise to sinusoidal terms which 
can be handled by step or piecewise linear approxim- 
ations as before. If necessary it is possible to introduce 
constraints on the spatial relationship of atoms in 
three-dimensional formulations. For example, one 
could specify a spacing of at least D by putting an up- 
per bound of one on the number of atoms in spheres of 
diameter D. 

Experience 

In order to test the methods some small artificial ex- 
amples were constructed. As far as I know no genuine 
crystallographic problems have been tackled by these 
methods. 

Peaks of the form 

A ( ~ -  x) = B exp[ -  k ( ~ -  x) 2] 

were used, where B and k are constants. Peaks were 
placed randomly and structure factors were calculated 
and then rounded off, to give something of the effect of 
experimental errors in a real example. Errors intro- 
duced in this way are rectangularly distributed with a 
maximum error of approximately 0.001 times the zero 
order term. Problem 4 is an exception, as we shall 
see. 

N o .  

1-3 
4 
5 

Table 2. Test examples 
Atom parameters 

Type 1 Type 2 Type 1 
B k B k a b 
10 790 7 632 0.111 0.302 
10 790 7 632 0.083 0.400 
10 800 7 620 0.131 0.343 

Atom positions 

C 

0"496 

Type 2 
a b 

0.207 0"414 
0.200 0"300 
0"321 0"364 

NO. 

1 
2 
3 
4 
5 

Formulation 
Electron density 
Electron density 
Structure factors 
Electron density 
Structure factors 

Table 3. Formulation details 
Structure factors 

Fixed Atom Grids 
Total sign types n 

0-17, 19, 20 0"7 2 31 
0-17, 19, 20 0"7 1 51 

1--8 1.7 2 31 
0-23 0"9 2 31 
1-10 1 2 41 

N 
15 
21 

21 

Problem size 
Con- Vari- 

straints ables 
17 93 
22 89 
10 74 
23 103 
12 99 

A C 26B - 15" 
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No. Sign errors la 
1 1, 19, 20 0.011 
2 17 0.001 
3 8 0.011 
4 - 0.000 
5 - 0.006 

Table 4. Result summary . . . . . . .  

Comput a - 
tion time 

Atom position errors Grid Intera, for KDF 9 
• lb 1 c 2a 2b spacing tions (see) 

0.002 --  0.007 0.003 0.017 460 40 
0.002 --  0.007 0.004 0.010 920 130 
0.035 --  0.040 0.014 0.017 3510 220 
0.000 --  0.000 0.000 0.017 2240 290 
0.006 0.004 0.016 0.014 0-013 440 40 

Details of the problems and formulations are given 
in Tables 2 and 3. Nos. 1-3 are three different formula- 
tions of the same problem. No. 1 is a straightforward 
application of electron-density matching; it includes a 
large number of Fourier terms for the number of atoms 
and the grid spacing is rather coarse for the higher 
terms; this may explain why s19 and s20 were incorrectly 
determined. The formulation for No. 2 uses only one 
peak type (with parameters B=8.5,  k=711) to reduce 
the •problem size. No. 3 includes a comparatively small 
set of signs with an appropriate grid spacing. No. 4 was 
constructed so that the atoms fell on grid points to see 
whether exact results could be obtained for such a case. 
Computed structure factors were not  rounded off but 
included to six figure accuracy in this case. 

The results are given in Table 4. A tree search integer 
programming algorithm (Dakin, 1965) was used. The 
solution algorithm failed to terminate in each case, so 
the solutions reached may not be optimal, but the sig- 
nificant feature of the results is that structures were 
correctly resolved in all cases except, possibly, No. 3 
which is the only case in which the atom position errors 
exceed the grid spacing. Even here the resolved struc- 
ture may well be near enough to reduce to the correct 
structure when refined. It would appear that this for- 
mulation included barely enough structure factors; a 
slightly altered version of the integer programming al- 

gor i thm failed to find a solution within l0 minutes. In 
a l l  cases the terms whose signs were incorrect were 
comparatively small. 

The amount of computation is indicated in the last 
two columns, which give the number of iterations of the 
Simplex method and the central processor computation 
time for the KDF9. In the absence of other experience 
no great significance can be placed on the differences 

in the computations required for the different formula- 
tions. The computation requirements are likely to grow 
quite rapidly with increasing size of problem; it would 
be well worth finding out just how rapidly. 

Conclusions 

The methods we have described give promise of pro- 
viding automatic methods for solving small centro- 
symmetric problems and could possibly be useful for 
more general problems. Just how reliable the method 
is and how far it can be pushed using modern .large- 
scale computers remains to be seen. It would be well 
worth following up. 

I am indebted to Dr H. C. Freeman and Dr J. Sime 
who introduced me to the phase problem and to Pro- 
fessor J. M. Bennett who first suggested that integer 
programming might be applicable. This research was 
supported, in part, by Air Force Office of Scientific 
Research Grants AF-AFOSR-62-402 and AFOSR-64- 
686, and was carried out at Sydney University. 
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